凉州区饲用型甜高粱配方施肥试验初报

张小叶

(甘肃省武威市凉州区清水乡农技站, 甘肃 武威 733000)

摘要: 在全膜平作条件下,通过"3414"试验,建立了饲用型甜高粱鲜草产量与氮、磷、钾肥之间的回归方程,得出凉州区种植饲用型甜高粱的最佳效益施肥量为N 562.5 kg/hm²、 P_2O_5 150 kg/hm²、 K_2O 120 kg/hm²,此时饲用型甜高粱鲜草产量为132.96 t/hm²。

关键词: 饲用型甜高粱; 配方施肥; 凉州区中图分类号: S514 文献标识码: A

doi:10.3969/j.issn.1001-1463.2014.08.011

凉州区地处西北内陆,属大陆温带干旱半干旱气候,年平均降水量161 mm,蒸发量2020 mm,人均水资源占有量950 m³,具有干旱少雨、日照充足、昼夜温差大的特点,是全国水资源最缺乏地区之一。甜高粱根系发达,耐旱、耐盐碱、耐涝,被称为"作物中的骆驼",是理想的节水作物。近年来,结合石羊河流域综合治理项目的实施,凉州区大力发展高效节水农业,2013年全区推广种植饲用型甜高粱1667 hm²左右,在实现节水的同时,经济效益显著提高。笔者研究了不同施肥水平对甜高粱的增产效果,现将结果报道如下。

文章编号: 1001-1463(2014)08-0028-03

1 材料与方法

1.1 供试材料

供试氮肥为尿素(含N 46.4%), 甘肃刘化(集团)有限责任公司生产; 磷肥为普通过磷酸钙(含 P_2O_5 16%), 云南金星化工有限公司生产; 钾肥为硫酸钾(含 K_2O 33%), 山西钾肥有限责任公司生产。供试地膜幅宽140 cm、厚0.008 mm。指示甜高粱品种为饲用型甜高粱BJ0603。

1.2 试验方法

试验设在凉州区金沙乡于庄村,试验区地处北纬37°59'、东经102°35',海拔1516 m,年降水量162 mm左右。试验地土层深厚,质地疏松,

收稿日期: 2014-02-27

作者简介: 张小叶(1976—), 女, 甘肃武威人, 农艺师, 主要从事农业技术推广工作。联系电话: (0)18009359536。 E-mail: zxy1073174702@qq.com

降,叶片MDA积累量显著升高,侧根数目增多,叶片内可溶性糖含量增加。随着PEG浓度增加,亚麻种子萌发率、幼苗茎叶鲜重下降趋缓,叶片MDA积累量上升趋缓,主根长度、色素浓度下降,侧根明显增多,叶片可溶性糖含量增加。

2) PEG浓度为20%的干旱胁迫下,干旱已对亚麻种子萌发和幼苗生长产生了较大影响,而随着干旱胁迫程度增加,亚麻对干旱胁迫的响应减弱,其耐受程度增加。随着PEG浓度加大,亚麻会通过增加侧根数目以及增加叶片可溶性糖含量以应对逆境,进而提高了其应对干旱胁迫的能力。

参考文献:

- [1] SALAJ J, PETROVSKU B, OBMT B, et al. Histological study of embryo-like structures initiated from hypocotyl segments of flax(Linum usitatissimum L.)[J]. Plant Cell Rep. 2005, 24: 590-595.
- [2] 王玉富. 我国亚麻生物技术的研究现状及发展[J]. 中国麻业, 2005, 27 (2): 60-65.

- [3] 张运晖,赵 瑛,罗俊杰. 甘肃胡麻产业发展浅议[J]. 甘肃农业科技,2013(7):54-55.
- [4] 王玉富,周思君,刘 燕,等.亚麻转基因植株的再生及生根培养的研究[J].中国麻业,2000,22(3):25-27.
- [5] JAIN P, RASHID A. Stimulation of shoot regeneration on Linum hypocotyls segments by thidiazuron and its response to light and calcium [J]. Biologia Plantarum, 2001, 44: 611-633.
- [6] 徐云远,牛炳韬,贾敬芬.卫星搭载亚麻后代中PEG和NaC1 抗性系的初步筛选[J]. 西北植物学报,2000,20(2):159-163.
- [7] 李文婷, 姜 丽, 计巧灵, 等. 盐胁迫下两个亚麻品 种幼苗的生理生化特性[J]. 生物技术, 2009, 19(2): 26-29.
- [8] 胡新元,周义龙. PEG胁迫对胡麻种子萌发的影响 [J]. 甘肃农业科技,2011 (7):22-23.

(本文责编:陈 伟)

肥力中等,土壤类型为灰钙土。前茬为马铃薯。

试验采用"3414"方案设计,即3因素(氮、磷、 钾)、4水平(0水平为不施肥,1水平为2水平× 0.5, 2水平为当地最佳施肥水平, 3水平为2水平× 1.5), 共14个处理, 试验因子水平见表1、试验方 案见表2。试验随机区组排列, 3次重复, 小区面 积54 m² (9 m×6 m)。栽培模式为全膜平作,等行 距种植。2013年4月8日覆膜,每小区覆地膜4幅, 4月16日浇安种水,5月13日播种,每幅地膜种4 行, 行距40 cm, 穴距22 cm, 每穴播2粒种子, 保 苗11.25万株/hm²。播前按试验方案分小区准确称 取供试肥料,全部磷肥、钾肥及40%的氮肥作底肥 一次性施入。出苗后及时间苗定苗,每穴留1株。 生育期内共灌水4次,总计灌水量5 400 m³/hm²,苗 期后结合灌水追施25%的氮肥,拔节后结合灌水追 施剩余35%的氮肥。生育期掰除所有分蘖。9月25 日收获时每小区随机抽取5株测量株高、茎粗(用 游标卡尺测量从根部向上第2节中间茎粗)、叶片 数及茎秆含糖量(用手持测糖仪测量根部以上第2 节、第6节含糖量)等,按小区单收测鲜草产量。

表1 试验因子水平

 水平	施肥量(kg/hm²)					
水干	N	P_2O_5	K_2O			
0	0	0	0			
1	187.5	75.0	60.0			
2	375.0	150.0	120.0			
3	562.5	225.0	180.0			

2 结果与分析

2.1 对饲用型甜高粱生长及茎秆含糖量的影响

由表2可以看出,株高、茎粗各施肥处理均高于不施肥处理 $(N_0P_0K_0)$,株高以 $N_3P_2K_2$ 处理最高,为285 cm,较 $N_0P_0K_0$ 处理高80 cm;其次是 $N_2P_2K_2$ 、 $N_2P_3K_2$ 处理,分别较 $N_0P_0K_0$ 处理高76、654 cm。茎

粗 $N_2P_3K_2$ 处理最粗,为2.77 cm,较 $N_0P_0K_0$ 处理粗 1.31 cm;其次是 $N_3P_2K_2$ 、 $N_2P_2K_2$ 处理,分别较 $N_0P_0K_0$ 处理粗 1.28、1.24 cm。叶片数无钾区 $(N_2P_2K_0$ 处理)、高钾区 $(N_2P_2K_3$ 处理)均低于 $N_0P_0K_0$ 处理,无氮区 $(N_0P_2K_2$ 处理)与 $N_0P_0K_0$ 处理相同,其余均高于 $N_0P_0K_0$ 处理,以 $N_2P_2K_2$ 、 $N_2P_3K_2$ 、 $N_3P_2K_2$ 、 $N_1P_2K_1$ 最多,较 $N_0P_0K_0$ 处理多4片。茎秆平均含糖量 $N_2P_1K_2$ 处理、 $N_2P_1K_1$ 处理分别较 $N_0P_0K_0$ 处理高 1.7、0.1百分点, $N_1P_2K_1$ 处理与 $N_0P_0K_0$ 处理相同,其余均低于 $N_0P_0K_0$ 处理。

2.2 对饲用型甜高粱鲜草产量的影响

由表2可以看出, $N_3P_2K_2$ 处理的鲜草折合产量最高,为132.96 t/hm^2 ,较不施肥处理($N_0P_0K_0$)增产80%;其次是 $N_2P_2K_2$ 、 $N_2P_3K_2$ 处理,分别为125.80、119.65 t/hm^2 ,较 $N_0P_0K_0$ 处理分别增产70%、62%。在 P_2K_2 水平下,随着施氮量的增加,产量随之增加;在 N_2P_2 、 N_2K_2 水平下,随着施钾量、施磷量的增加,产量均呈先增后减趋势。

2.3 肥料效应方程

以鲜草产量为目标函数,根据试验结果,运用"3414"试验统计分析方法,得出氮肥(N)、磷肥(P)、钾肥(K)与饲用型甜高粱鲜草产量(Y)之间的回归方程为:

 $Y=57.11+2.84N-0.09N^2+2.56P-0.11P^2+8.52K-0.16K^2+0.19NP-0.03NK-0.58PK$ (r=1.07), $r^2=1.04$)

经对回归方程进行F检验,F=6.74>F_{0.05}=6.10,说明饲用型甜高粱产量(Y)与N、P、K施肥量之间存在显著的回归关系。应用该回归方程,按氮肥(N)4.9元/kg、磷肥(P_2O_5)7.5元/kg、钾肥(K_2O)8.0元/kg、饲用型甜高粱0.26元/kg的价格,经计算和分析处理,得出饲用型甜高粱最大施肥量为N613.2 kg/hm²、 P_2O_5 153.9 kg/hm²、 K_2O 133.8 kg/hm²,

表2 试验方案及饲用型甜高粱的品质和鲜草产量

试验	试验 处理		施肥量(kg/hm²)		株高	茎粗	叶片数	含糖量(%)		折合产量	
编号	处连	N	P_2O_5	KO_2	(cm)	(cm)	(片)	第2节	第6节	平均含糖	(t/hm ²)
1	$N_0P_0K_0$	0	0	0	205	1.46	14	9.6	10.7	10.1	73.98
2	$N_0P_2K_2$	0	150.0	120.0	238	1.55	14	8.2	9.5	8.9	90.33
3	$N_1P_2K_2$	187.5	150.0	120.0	255	2.21	17	8.5	10.3	9.4	103.07
4	$N_2P_0K_2$	375.0	0	120.0	260	1.95	16	9.2	10.2	9.7	109.52
5	$N_2P_1K_2$	375.0	75.0	120.0	268	1.81	15	10.7	12.8	11.8	115.39
6	$N_2P_2K_2$	375.0	150.0	120.0	281	2.70	18	8.3	10.2	9.3	125.80
7	$N_2P_3K_2$	375.0	225.0	120.0	270	2.77	18	7.3	8.6	7.9	119.65
8	$N_2P_2K_0$	375.0	150.0	0	250	2.48	13	7.7	9.1	8.4	111.20
9	$N_2P_2K_1$	375.0	150.0	60.0	256	2.57	17	7.7	7.9	7.8	116.62
10	$N_2P_2K_3$	375.0	150.0	180.0	263	2.59	13	7.6	7.5	7.5	117.31
11	$N_3P_2K_2$	562.5	150.0	120.0	285	2.74	18	8.8	10.4	9.6	132.96
12	$N_1P_1K_2$	187.5	75.0	120.0	241	2.27	17	9.2	10.3	9.8	94.77
13	$N_1P_2K_1$	187.5	150.0	60.0	249	2.46	18	10.1	10.1	10.1	97.68
14	$N_2P_1K_1$	375.0	75.0	60.0	260	2.20	16	9.6	10.8	10.2	114.03

陇中干旱半干旱地区玉米养分投入情况调查

陈亚兰1,张 健2,王会蓉2

(1. 甘肃省定西师范高等专科学校,甘肃 定西 743000; 2. 甘肃省定西市农业科学研究院,甘肃 定西 743000)

摘要: 为给陇中干旱半干旱地区玉米合理施肥提供参考,在定西市安定区、通渭县、陇西县 3 个区 (县) 进行了玉米养分资源投入调查。结果表明,在陇中干旱半干旱地区,玉米产量适中的农户仅占 17.8 %,偏低的农户占 52.5 %,很低的农户 9.9%,偏高的农户占 13.9%,很高的农户占 5.9%。N 平均用量为 176.8 kg/hm², P_2O_5 平均用量为 80.0 kg/hm², K_2O 平均用量为 40.3 kg/hm²。氮肥投入量适中的农户占 21.8%,磷肥投入量适中的农户占 25.7%,钾肥投入量适中的农户占 15.8%。氮、磷和钾肥主要以基施为主,氮肥和磷肥的追肥比例很小,钾肥全部以基肥形式投入。甘肃省陇中干旱半干旱地区玉米合理施肥量为 N 160~260 kg/hm²、 P_2O_5 70~140 kg/hm²、 K_2O 40~70 kg/hm²。

关键词: 玉米; 陇中干旱半干旱地区; 养分资源投入

中图分类号: S147.2 文献标识码: A 文章编号: 1001-1463(2014)08-0030-02

doi:10.3969/j.issn.1001-1463.2014.08.012

化肥在农业生产中发挥着重要的作用,不仅提高了农产品产量和质量,而且改善了土壤肥力状况。合理施用化肥可以避免土壤结构的破坏和环境污染。在其它生产因素不变的情况下,合理施用化肥可使农作物增产40%~60%。在我国,农民施用化肥多停留在经验施肥的水平上,化肥利用率仅为30%~40%,浪费非常严重。我们调查分析了陇中干旱半干旱地区农户种植玉米养分投资现状,旨在为陇中干旱半干旱地区玉米合理施肥提供依据。

1 调查区域及调查方法

甘肃省定西市属于陇中干旱半干旱地区,玉米一般于"谷雨"前播种,10月中下旬收获。在定西市安定区、通渭县、陇西县3个区(县),每区(县)选择有代表性的3个乡(镇),每乡(镇)选择3个村,每村选择3~4户玉米种植户做为调查对象,

总共调查101户。调研从2013年9月下旬开始,到2013年10月下旬结束。调查内容包括:地块基本特征、施肥技术、玉米品种及耕作措施及产量等。调查数据用EXCEL处理分析。

2 结果与分析

2.1 产量分布

经调查统计,2013年陇中干旱半干旱地区玉 米平均产量为6568.1 kg/hm²,玉米产量分级指标 见表1。以陇中干旱半干旱地区玉米产量6750~

表1 2013年陇中干旱半干旱地区玉米产量分布

分级	折合产量 (kg/hm²)	样本数 (个)	总样本数 (个)	占总数比率
- 很低	<4 500	10	101	9.9
偏低	4 500 ~ 6 750	53	101	52.5
适中	6 750 ~ 9 000	18	101	17.8
偏高	9 000 ~ 11 250	14	101	13.9
很高	>11 250	6	101	5.9

收稿日期: 2014-03-24

作者简介: 陈亚兰(1979—), 女, 甘肃陇西人, 副教授, 主要从事生物遗传育种教学。联系电话: (0)18993208832。

此时饲用型甜高粱鲜草产量为133.48 t/hm^2 ; 最佳施肥量为N 562.5 kg/hm^2 、 P_2O_5 150 kg/hm^2 、 K_2O 120 kg/hm^2 ,此时饲用型甜高粱鲜草产量为132.96 t/hm^2 。

3 小结

1)试验结果表明,在凉州区全膜平作栽培条件下种植饲用型甜高粱,以施N 562.5 kg/hm²、 P_2O_5 150 kg/hm²、 K_2O 120 kg/hm²处理的鲜草产量最高,折合产量为132.96 t/hm²,较不施肥处理($N_0P_0K_0$)增产80%;其次是施N 375.0 kg/hm²、 P_2O_5 150 kg/hm²、 K_2O 120 kg/hm²处理和施N 375.0 kg/hm²、 P_2O_5 225.0

kg/hm²、K₂O 120 kg/hm²处理,分别较N₀P₀K₀处理增产70%、62%。

2)建立了饲用型甜高粱鲜草产量(Y)与氮、磷、钾肥之间的回归方程Y=57.11+2.84N-0.09 N^2 +2.56P-0.11 P^2 + 8.52 K - 0.16 K^2 + 0.19 NP - 0.03 NK - 0.58 PK(r=1.07、 r^2 =1.04),得出凉州区种植饲用型甜高粱的最佳效益施肥量为N 562.5 kg/hm²、 P_2O_5 150 kg/hm²、 V_2O_5 150 kg/hm²。

(本文责编:王建连)