2016

# 高海拔冷凉区露地蔬菜不同复种模式 经济效益分析

蒯佳琳,张玉鑫,王晓巍 (甘肃省农业科学院蔬菜研究所,甘肃 兰州 730070)

**摘要:**以娃娃菜、花椰菜和青笋3种高原夏秋蔬菜为对象,对9种不同复种方式的产量及经济效益进行了分析研究。结果表明,娃娃菜—娃娃菜复种模式生产力最高,经济效益最好;其次是娃娃菜—花椰菜复种模式。

关键词:露地蔬菜;复种模式;产量;经济效益中图分类号:S63-33 文献标志码:A

doi:10.3969/j.issn.1001-1463.2016.07.012

甘肃省永昌县地处河西走廊东部、祁连山北麓,年平均气温 4.8 ℃,无霜期 130 d,干燥多风,气候凉爽,温光水肥条件充足,且各种土传病原菌少,虫口密度小,是发展高原优质无公害蔬菜

文章编号: 1001-1463(2016)07-0038-03

的理想产区<sup>[1-2]</sup>。由于该地区露地蔬菜种植起步较迟,生产技术较为落后,一般只生产一茬蔬菜,这就很大程度限制了土地和光能利用率,致使高原夏菜面积和产量增长缓慢。为了使该地区良好

收稿日期: 2016-03-11

基金项目: 农业部西北地区蔬菜科学观测实验站项目 (2015-A2621-620321-G1203-066); 甘肃省农业科学院创新专项 (2014GAAS02)

作者简介: 蒯佳琳(1985—), 男, 甘肃兰州人, 研究实习员, 主要从事蔬菜栽培及营养研究工作。E-mail: kuaijialin 1222@126.com。

氨酸含量先增加后逐渐降低,可能是胁迫初期其自身通过代谢来修复、适应胁迫,促使启动渗透调节功能,通过合成大量脯氨酸(PRO)来降低细胞内的渗透势,表明脯氨酸含量对其适应环境有着重要的渗透调节作用。

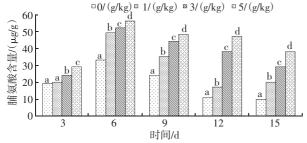



图 3 不同 NaCl 浓度胁迫下龙柏脯氨酸含量的变化

# 3 小结与讨论

在各盐分胁迫浓度处理下,龙柏均可栽植成活,成活率达100%,表现出较高的抗盐性,属于强耐盐植物。随着胁迫时间的延长,各耐盐指标呈现出先增后降的趋势,表明龙柏自身对盐胁迫环境的适应和修复能力。细胞膜透性、丙二醛(MDA)含量、脯氨酸含量在一定的处理时间内均

与盐溶液浓度成正相关,与张云起、胡小多、刘 玉冬等的研究结果相似<sup>[6-8]</sup>。因此,龙柏可以作为 潍坊滨海新区当地园林绿化植物广泛种植。

### 参考文献:

- [1] 武维华. 植物生理学[M]. 北京: 科学出版社, 2003: 406-408.
- [2] 余叔文,汤章城.植物生理与分子生物学(第二版) [M].北京:科学出版社,1998:754-755.
- [3] 郝建军,康宗利,于 洋. 植物生理学实验技术[M]. 北京: 化学工业出版社, 2007.
- [4] 李合生, 孙 群, 赵世杰, 等. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
- [5] 常红军,陈年来. 6 种适宜兰州栽培的绿篱植物及其应用[J]. 甘肃农业科技,2013(3):63-64.
- [6] 张云起,刘世琦,杨凤娟,等. 耐盐西瓜砧木筛选及 其耐盐机理的研究[J]. 西北农业学报,2003,12(4):
- [7] 胡小多,刘兴亮,石溪掸,等. 盐胁迫对地锦生理指标的影响[J]. 黑龙江生态工程职业学院学报,2008,7(4)·10-11
- [8] 刘玉冬,杨静慧,刘艳军,等.文冠果和银合欢抗盐 生理特性初探[J].安徽农业科学,2009,37(6): 2378-2379.

(本文责编:郑立龙)

的气候条件以及土地资源得到有效地利用,提高 复种的指数,增加农民群众的经济收入,我们在 河西走廊高海拔冷凉气候条件下,以娃娃菜、花 椰菜和青笋3种高原夏秋蔬菜为对象,利用育苗 移栽技术,研究比较了各复种模式的经济效益, 以期为高原夏菜的高产优质栽培提供参考。

#### 1 材料和方法

#### 1.1 试验区概况

本研究于 2013 年 5 — 9 月在甘肃省农业科学院蔬菜研究所永昌试验站进行。试验区海拔 1 996 m, 年平均气温 4.8 ℃, 年降水量 188 mm, 无霜期 130 d, 年日照时数 2 933 h。供试土壤为灌漠土,肥力中等,河水灌溉<sup>[3]</sup>。

## 1.2 试验材料

指示青笋品种为太原笋,指示娃娃菜品种为 春玉皇,指示花椰菜品种为雪妃。

## 1.3 试验方法

本试验共设 9 个复种方式, F1 为娃娃菜一娃娃菜、F2 为娃娃菜一青笋、F3 为娃娃菜一花椰菜、F4 为青笋一青笋、F5 为青笋一娃娃菜、F6 为青笋一花椰菜、F7 为花椰菜—花椰菜、F8 为花椰菜—青笋、F9 为花椰菜—娃娃菜,每种方式 3 次重复,小区面积 27 m²。第 1 茬于 5 月 5 日定植,7 月上旬采收;第 2 茬于 6 月 14 日育苗,7 月中旬定植。播种前整地作畦覆膜,沟深 20 cm,沟宽 30 cm,垄宽 40 cm,花椰菜沟深 20 cm,沟宽 40 cm,垄宽 50 cm。花椰菜整个生育期施肥总

量为尿素 690 kg/hm²、普通过磷酸钙 825 kg/hm²、硫酸钾 300 kg/hm²。青笋整个生育期施肥总量为尿素 645 kg/hm²、普通过磷酸钙 585 kg/hm²、硫酸钾 330 kg/ hm²。娃娃菜整个生育期施肥总量为尿素 765 kg/hm²、普通过磷酸钙 375 kg/hm²、硫酸钾 150 kg/hm²。生长期间适时中耕除草和防治病虫害,其他管理同常规。

## 1.4 测定项目和方法

分别于成熟期按小区进行产量测定。利用投入产出分析法计算各复种模式的总产值、生产总成本、净产值、纯收入、投入产出比等各项指标<sup>[4]</sup>。总产值包括前茬作物产值与复种作物产值。生产总成本包括物质费用和人工费用,其中物质费用包括种子、肥料、水费、农药、农膜,人工费按当地统一工价 70 元/d 计。

# 2 结果与分析

# 2.1 不同复种模式对产量的影响

不同复种模式下蔬菜产量的差异如表 1 所列。通过对比前后茬娃娃菜、青笋和花椰菜的单重可以看出,后茬种植的蔬菜较对应前茬种植蔬菜的单重都有所降低,从而造成产量的降低。其中后茬娃娃菜平均单重较前茬娃娃菜降低了 23.43%,产量降低了 18.93%;后茬青笋平均单重较前茬青笋降低了 32.21%,产量降低了 32.21%;后茬花椰菜平均单重较前茬花椰菜降低了 4.48%,产量降低了 13.16%。

为了进行不同作物间的产量比较, 把娃娃菜、

| W. T. LUXII KAMATA ENWAY |       |      |           |           |            |  |  |  |  |
|--------------------------|-------|------|-----------|-----------|------------|--|--|--|--|
| 处理                       | 单重/kg |      | 产量 /(     | 折合产量①     |            |  |  |  |  |
|                          | 前茬作物  | 复种作物 | 前茬作物      | 复种作物      | /(kg/hm²)  |  |  |  |  |
| F1                       | 1.01  | 0.74 | 92 718.00 | 71 928.00 | 164 646.00 |  |  |  |  |
| F2                       | 1.02  | 0.75 | 93 636.00 | 56 700.00 | 138 996.00 |  |  |  |  |
| F3                       | 1.00  | 0.59 | 91 800.00 | 31 860.00 | 155 520.00 |  |  |  |  |
| F4                       | 1.01  | 0.61 | 76 356.00 | 46 116.00 | 97 977.60  |  |  |  |  |
| F5                       | 0.98  | 0.78 | 73 710.00 | 75 816.00 | 134 784.00 |  |  |  |  |
| F6                       | 0.98  | 0.63 | 74 088.00 | 34 020.00 | 127 310.40 |  |  |  |  |
| F7                       | 0.67  | 0.70 | 39 798.00 | 37 800.00 | 139 276.80 |  |  |  |  |
| F8                       | 0.65  | 0.65 | 38 610.00 | 49 140.00 | 101 088.00 |  |  |  |  |
| F9                       | 0.69  | 0.80 | 40 986.00 | 77 760.00 | 143 337.60 |  |  |  |  |

表 1 不同复种模式对产量的影响

①根据价格比折算成的娃娃菜。以当地近 3 a 蔬菜收获时的平均价格(娃娃菜 1.0 元/kg,青笋 0.8 元/kg,花椰菜前茬 1.6 元/kg,后茬 2.00 元/kg)计算,下表同。

| A = 1 1 2 2 1 1 1 2 2 4 2 2 1 1 1 1 1 1 1 1 |                  |                   |                  |                    |                  |       |  |  |  |
|---------------------------------------------|------------------|-------------------|------------------|--------------------|------------------|-------|--|--|--|
| 处理                                          | 总产值<br>/(元 /hm²) | 物质费用<br>/(元 /hm²) | 人工费<br>/(元 /hm²) | 生产总成本<br>/(元 /hm²) | 纯收入<br>/(元 /hm²) | 产出/投入 |  |  |  |
| F1                                          | 164 646.00       | 44 664.19         | 12 360.00        | 57 024.19          | 107 621.81       | 2.89  |  |  |  |
| F2                                          | 138 996.00       | 41 156.24         | 11 460.00        | 52 616.24          | 86 379.76        | 2.64  |  |  |  |
| F3                                          | 155 520.00       | 43 560.33         | 10 560.00        | 54 120.33          | 101 399.67       | 2.87  |  |  |  |
| F4                                          | 113 248.80       | 37 648.29         | 10 560.00        | 48 208.29          | 65 040.51        | 2.35  |  |  |  |
| F5                                          | 149 526.00       | 41 156.24         | 11 460.00        | 52 616.24          | 96 909.76        | 2.84  |  |  |  |
| F6                                          | 142 128.00       | 40 202.37         | 9 660.00         | 49 862.37          | 92 265.63        | 2.85  |  |  |  |
| F7                                          | 139 276.80       | 42 756.46         | 8 760.00         | 51 516.46          | 87 760.34        | 2.70  |  |  |  |
| F8                                          | 101 088.00       | 40 202.37         | 9 660.00         | 49 862.37          | 51 225.63        | 2.03  |  |  |  |
| F9                                          | 143 337.60       | 43 560.33         | 10 560.00        | 54 120.33          | 89 217.27        | 2.65  |  |  |  |
|                                             |                  |                   |                  |                    |                  |       |  |  |  |

表 2 不同复种模式经济效益综合评价

青笋和花椰菜产量均按照娃娃菜价格比折算,可以看出,折产后9种复种模式的产量从高到低依次为F1、F3、F9、F7、F2、F5、F6、F8、F4。其中,娃娃菜复种娃娃菜种植模式产量最高,比其它处理高5.87%~68.04%;其次为娃娃菜复种花椰菜种植模式,比其它处理高8.50%~58.73%。产量最低的为青笋复种青笋种植模式。2.2 不同复种模式经济效益综合评价

为了分析不同复种模式的经济效益,对各模 式的生产总成本、纯收入、产出投入比进行了分 析。由表2可知,不同复种模式的总产值从高到 低依次为 F1、F3、F5、F9、F6、F7、F2、F4、 F8; 纯收入从高到低依次为 F1、F3、F5、F6、 F9、F7、F2、F4、F8;产出投入比从高到低依次 为 F1、F3、F6、F5、F7、F9、F2、F4、F8。其 中, F1(娃娃菜复种娃娃菜)模式的总产值最高, 达 164 646.00 元 /hm², 比其它模式高 5.87% ~ 62.87%; 纯收入也最高, 达 107 621.81 元 /hm², 比其它模式高 6.04%~110.09%; 产出投入比最大, 为 2.89。说明娃娃菜复种娃娃菜种植模式经济效益 最高。其次为 F3(娃娃菜复种花椰菜)种植模式,产 值达 155 520.00 元 /hm², 纯收入 101 399.67 元 /hm², 产出投入比为 2.87。这两种模式的总产值均可达 到15万元/hm²以上。而F4(青笋复种青笋)和F8(花 椰菜复种青笋)2种模式的总产值均较低,均在12 万元 / hm² 以下, 纯收入也在 7 万元 /hm² 以下, 产 出投入比也较低。这可能是由于7月中旬至8月 中旬当地温度相对较高,后期复种青笋易发生抽 薹,影响后茬青笋产量[5]。

## 3 小结与讨论

复种虽然增加了一定的劳动和费用等生产成本,但是能提高农民的收入,有利于农业生产的可持续发展<sup>[6]</sup>。本研究表明,在高海拔冷凉区,夏秋露地蔬菜种植以娃娃菜一娃娃菜复种模式为最佳,折合产量达 164 646.00 kg/hm²,产值达 164 646.00 元 /hm²,纯收入达 107 621.81 元 /hm²。娃娃菜一花椰菜复种模式效益较好,折合产量达 155 520.00 kg/hm²,产值达 155 520.00 元 /hm²,纯收入达 101 399.67 元 /hm²。复种模式在保证前茬作物产量的基础上,选择适宜的后茬种植作物,不但提高了单位面积上的经济效益,还减少了不同年份气候变化和市场波动所带来的经济损失。

# 参考文献:

- [1] 张俊峰,王志伟,张玉鑫.沿祁连山冷凉地区花椰菜高效栽培技术[J].北方园艺,2011(7):65-66.
- [2] 董吉德. 永昌县拱棚胡萝卜复种娃娃菜栽培技术[J]. 甘肃农业科技, 2012(11): 58-59.
- [3] 蒯佳琳, 王晓巍, 张玉鑫, 等. 双孢蘑菇菌渣在高海拔冷凉区蔬菜栽培中的应用研究 [J]. 甘肃农业科技, 2015(8): 3-4.
- [4] 黄 丽, 刘国勇. 南疆地区核桃不同间作模式经济效益分析[J]. 北方园艺, 2014(5): 194-197.
- [5] 张玉鑫,高世铭,王晓巍,等.河西走廊高海拔冷凉区茎用莴苣适宜密度与播期研究[J].北方园艺,2009 (11):74-75.
- [6] 杨滨娟,黄国勤,陈洪俊,等.稻田复种轮作模式的生态经济效益综合评价[J].中国生态农业学报,2009,24(1):112-120.

(本文责编:陈 珩)